Intermediate logics admitting a structural hypersequent calculus
نویسنده
چکیده
We characterise the intermediate logics which admit a cut-free hypersequent calculus of the form HLJ+ R, where HLJ is the hypersequent counterpart of the sequent calculus LJ for propositional intuitionistic logic, and R is a set of so-called structural hypersequent rules, i.e., rules not involving any logical connectives. The characterisation of this class of intermediate logics is presented both in terms of the algebraic and the relational semantics for intermediate logics. We discuss various— positive as well as negative—consequences of this characterisation.
منابع مشابه
Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models
In this paper we define cut-free hypersequent calculi for some intermediate logics semantically characterized by bounded Kripke models. In particular we consider the logics characterized by Kripke models of bounded width Bwk, by Kripke models of bounded cardinality Bck and by linearly ordered Kripke models of bounded cardinality Gk. The latter family of logics coincides with finite-valued Gödel...
متن کاملHypertableau and Path-Hypertableau Calculi for Some Families of Intermediate Logics
In this paper we investigate the tableau systems corresponding to hypersequent calculi. We call these systems hypertableau calculi. We define hypertableau calculi for some propositional intermediate logics. We then introduce path-hypertableau calculi which are simply defined by imposing additional structure on hypertableaux. Using pathhypertableaux we define analytic calculi for the intermediat...
متن کاملEmbedding formalisms: hypersequents and two-level systems of rule
A system of rules consists of (possibly labelled) sequent rules connected to each other by some variables and subject to the condition of appearing in a certain order in the derivation. The formalism of systems of rules is quite powerful and allows, e.g., the definition of analytic labelled sequent calculi for intermediate and modal logics characterised by frame conditions beyond the geometric ...
متن کاملTranslating Labels to Hypersequents for Intermediate Logics with Geometric Kripke Semantics
We give a procedure for translating geometric Kripke frame axioms into structural hypersequent rules for the corresponding intermediate logics in Int/Geo that admit weakening, contraction and in some cases, cut. We give a procedure for translating labelled sequents in the corresponding logic to hypersequents that share the same linear models (which correspond to Gödel-Dummett logic). We prove t...
متن کاملBunched Hypersequent Calculi for Distributive Substructural Logics
We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut-elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large cl...
متن کامل